$$
E^{\nabla} \text { DELU-H-76-001 }
$$

PHYLUM MOLLUSCA:
A GUIDE TO THE MOLLUSCA OF THE DELAWARE BAY REGION
by
Wayne Leathem and Don Maurer

DEL-SG-18-76

Marine Studies Complex
University of Delaware Lewes, Delaware 19958

Produced by
Delaware Sea Grant College Program
College of Marine Studies University of Delaware Newark, Delaware

19711

TABLE OF CONTENTS

Page
Preface 1
Introduction 2
Phylum Mollusca 2
Synopsis of the Organ Systems of the Mollusca 2
Class Polyplacophora 4
Class Gastropoda 4
Glossary of Gastropod Terms 10
Key to the Gastropoda of the Delaware Bay Region 12
Class Scaphopoda 19
Class Bivalvia 19
Glossary of Bivalve Terms 25
Key to the Bivalve Mollusca of the Delaware Bay Region 28
Class Cephalopoda 35
Key to the Cephalopoda of the Delaware Bay Region 36
General Bibliography of the Mollusca 37
Bibliography for the Bivalvia 38
Bibliography for Gastropoda and Cephalopoda 41

Preface

In the spring of 1973, a Guide to the Macroscopic Estuarine and Marine Invertebrates of the Delaware Bay Region was published by the College of Marine Studies, University of Delaware, as Volume 5 of the Delaware Bay Report Series. The purpose of the guide was to facilitate the study of macroscopic estuarine and marine invertebrates of the Delaware Bay region with particular emphasis on benthic organisms. It contained a section on the Phylum Mollusca. Since the guide was published, our ecological studies have considerably increased the collecting areas of the former guide. As a result, we considered this a good opportunity to refine and amend the original version of the Mollusca while including species recently added to our collection.

At this time we would like to thank our associates, Mr. Peter Kinner and Dr. Les Watling, for their continuous and enthusiastic support of this work. We also wish to acknowledge the help of Drs. Mel Carriker, Tucker Abbott, and Ruth Turner who provided numerous suggestions and improvements for the preparation of this manuscript. In particular we are grateful to Dr. Turner and her associate, W. Baranowski, for permitting us to cite directly or modify portions of their forthcoming guide to be published in the series of guides on the marine flora and fauna of the Northeastern United States: Mollusca: Shelled Benthic Gastropoda, R.D. Turner and W. Baranowski.

INTRODUCTION

PHYLUM MOLLUSCA

The Mollusca are the second largest phylum of invertebrates. There is no standard molluscan shape, as they are evolutionarily plastic in their major anatomical features, such as the foot, shell, mouth parts, and respiratory organs. The phylum is divided into seven classes: the Monoplacophora, Aplacophora, Polyplacophora, Gastropoda, Scaphopoda, Bivalvia, and Cephalopoda. The classes represent widely differing degrees of evolution and specialization, and all are represented in the oceans. Generally, however, most molluscs have no internal skeleton, no segments, or joints. The one thing all Mollusca have in common is the presence of a mantle. A synopsis of the organ systems follows.

SYNOPSIS OF THE ORGAN SYSTEMS OF THE MOLLUSCA

The molluscan body is soft and unsegmented and consists typically of an anterior head, a ventral foot, a dorsal visceral mass containing the digestive and reproductive organs, a mantle, and commonly an external protective shell. Molluscs may be characterized more specifically as follows:

Bilateral symmetry, except in Gastropoda and some Cephalopoda whose viscera and shell are coiled; 3 germ layers; one-layered mostly ciliated epithelium with mucous glands;

Body usually short and enclosed in a thin dorsal mantle (or pallium) that commonly secretes a calcerous shell with an organic matrix of 1,2 , or 8 parts (exceptions: shell internal, reduced, or absent); head region is developed with tentacles and eyes (except in Scaphopoda and

Bivalvia); and a ventral muscular foot is differently modified for crawling, burrowing, or swimming, or may be absent (as in oysters);

Digestive tract is complete, often U-shaped or coiled as in the Gastropoda; mouth encloses a radula and jaws (except in the Bivalvia where they are absent); anus generally opens into mantle cavity; a large digestive diverticulum (liver, digestive gland, hepatopancreas), and frequently salivary glands, are present;

Circulatory system includes a dorsal heart with 1 or 2 auricles and 1 ventricle usually in a pericardial cavity; there is an anterior aorta and other arteries opening into hemocoels (only the Cephalopoda possess capillaries); blood may be colorless or contain hemocyanin;

Gaseous exchange occurs in 1 to many ctenidia, mantle (pallial) cavity, and/or epidermis;

Excretion is carried out by 1 , or 1 or 2 pairs of nephridia (kidneys), mesodermal tubes opening from the pericardium into the mantle cavity; except in the Monoplacophora the coelom is reduced to small cavities of the nephridia, gonads, and pericardium;

Nervous system consists typically of 3 pairs of ganglia (cerebral above the mouth, pedal in the foot, visceral in the body) joined by longitudinal and cross nerves; many molluscs have organs for touch, smell, or taste, eyespots, complex eyes, and statocysts;

Sexes are usually separate (some are hermaphroditic, a few are protandric); gonads 1 or 2 with ducts; fertilization is external or internal; are mostly oviparous; development is by way of a trochophora larva followed by a veliger larva, or glochidial larva (in freshwater bivalves), or may be direct as in Pulmonata and Cephalopoda; there is no asexual reproduction.

CLASS POLYPLACOPHORA

(GK. polys, many; plax, plate; pherein, bear). The chitons superficially resemble flattened limpets; however, they lack tentacles and cephalic eyes. The shell is divided into eight transverse plates on the dorsal side which are embedded into the mantle or scale, fleshy girdle. They are bilaterally symmetrical with a terminal mouth (containing radula) and posterior anus. The gills are not paired, but lie on either side of the large central foot. Chitons are nocturnal, usually found intertidaliy, and most of them are herbivorous.

Family Chaetopleuridae
Chaetopleura apiculata (Say, 1830)

CLASS GASTROPODA

(GK. gaster, belly; podos, foot). The largest and most varied group of molluscs. Most univalves have spiral coiling and all gastropods at some time in ontogeny undergo a process called torsion. This process brings the mantle cavity to the front of the body while the visceral and pallial organs are twisted 180° in relation to the head and foot. They generally have a well developed head which contains a mouth with radula and well developed tentacles and a pair of eyes. The foot is primitively broad and flattened, usually with an operculum. The sexes are usually separate, although some orders are hermaphroditic. Most are herbivorous, but some are carnivorous.

Subclass Prosobranchia: This group consists mainly of aquatic gastropods whose shell structure appears to have some adaptive significance. There are three orders: the Archaeogastropoda, Mesogastropoda, and Neogastropoda. The gills are in the mantle cavity. The visceral mass retajns pronounced torsion and the visceral loop forms a figure eight.

Order Archaeogastropoda: The oldest and least specialized of the Prosobranchia. They are all marine except some of the Neritacea and a few land-dwelling families. The general architecture is the top-shaped spire or turban shell. The sides of the foot bear fleshy filaments used as sense organs. Most are herbivorous or deposit scrapers having numerous radular teeth of the rhipidoglossate type. Sexes are separate.

Family Trochidae
Solariella obscura (Couthouy, 1838) Margarites groenlandicus (Gmelin, 1971)

Order Mesogastropoda: The largest order of Mollusca and most diverse in mode of life. The fusiform or spindle-shaped spire is generally characteristic. The spout-like anterior canal in many is traversed by a pallial siphon drawing water into the pallial cavity, which enables the osphradium to chemically sample the environment in search of food. Most are mobile and often either carnivorous or herbivorous.

Family Littorinidae

```
Littorina littorea (Linne, 1758)
Littorina obtusata (Linne, 1758)
Littorina saxatilis (01ivi, 1792)
Littorina irrorata (Say, 1822)
```

Family Cerithiidae
Cerithiopsis greeni (C.B. Adams, 1838) Seila adams (H.C. Lea, 1845)

Family Triphoridae
Triphara nigrocincta (C.B. Adams, 1839)
Family Epitoniidae
Epitonium humphreysi (Kiener, 1838)
Epitonium rupicola (Kurtz, 1860)
Family Skeneopsidae
Skeneopsis planorbis (Fabricius, 1780)
Family Hydrobiidae
Hydrobia totteni Morrison, 1954
Fanily Crepidulidae
Calyptraea centralis (Conrad, 1841)
Crepidula fornicata (inne, 1758)
Crepidula convexa Say, 1822
Crepidula plana Say, 1822
Family Ovulidae
Simnia uniplicata (Sowerby, 1848)
Family Naticidae
Polinices imnaculatus (Totten, 1835)
Polinices duplicatus (Say, 1822)
Lunatia heros (Say, 1822)
Lunatia triseriata (Say, 1826)
Natica clausa Broderip and Sowerby, 1829

Order Neogastropoda: All are carnivores or scavengers with fusiform shells, a strong anterior canal, and a well developed osphradium. They are the most advanced of the Prosobranchia with a highly concentrated nervous system and eversible proboscis. The embryos are generally intracapsular.

Family Muricidae
Urosalpinx cinerea (Say, 1822)
Eupleura caudata (Say, 1822)
Family Columbellidae
Anachis avara (Say, 1822)
Anachis lafresmayi (Fisher and Eernardi, 1856)
Mitrella lunata (Say, 1826)
Family Buccinidae
Colus pygnaea (Gould, 1341)
Colus stimpsoni (Morch, 1867)
Family Melongenidae
Busycon carica (Gmelin, 1797)
Busycon contrarium (Conrad, 1840)
Busycon canaliculatum (linne, 1758)
Family Nassariidae
Nassarius vibex (Say, 1822)
Nassarius trivittatus (Say. 1822)
Ilyanassa obsoleta (Say, 1822)
Family Turridae
Pyrgocythara piticosa (C.B. Adans, 1850)
Kurtziella cerima (Kurtz and Stimpson, 1851)
Family Marginellidae
Marginella roscida Redfield, 1860

Subclass Opisthobranchia: There are three broadly different types of opisthobranchs: those that burrow in the substratum and possess thin external shells (Cephalaspidea); those that are flattened, naked, and slug-like (Nudibranchia); and those that swim are generally planktonic (Pteropoda). Evolutionarily the opisthobranchs rank highest among the gastropods; they have a vast adaptive morphology with nearly every family having some distinctive pattern. Generally in the Opisthobranchia the shell is reduced or lost as is the ctenidiaf gill. There is a loss
of torsion and eventually of the mantle cavity. There is a return to bilateral external symmetry. These are the most typically marine gastropods with only a few being high tidal representatives.

Order Cephalaspidea: External shell is present. Most are carnivorous, but sone may be ectoparasitic, the food is crushed by strong 1 imy plates lining the gizzard. The gills are present within a mantle cavity which is either on the right side or dorsally located. They are alt hemaphroditic.

Family Pyramidellidae
Odostomia seminuda (C.B. Adams, 1837) Odostomia impressa (Say, 1821)
Sayella fusca (C.B. Adams, 1839)
Turbonilla stricta Verrill, 1873
Turbonilia interrupta (Totten, 1835)
Family Acteonidae
Acteon punctostriatus (C.B. Adams, 1840)
Family Acteocinidae
Acteocina canaliculata (Say. 1822)
Family Haminoeidae
Haminoea solitaria (Say, 1822)
Family Retusidae
Retusa obtusa (Montagu, 1807)

Order Nudibranchia: This is the largest group of opisthobranchs. Detorsion is complete; the shell (except for the larval stage), gill, and mantle cavity are wholly lost, and rhinophores replace the head tentacles and osphradium. All species are hermaphroditic, and some are capable of self-fertilization.

Family Corambidae
Doridella obscura Verrill, 1870
Family Tergipedidae
Tergipes tergipes (Forskal, 1775)
Family Onchidorididae
Acanthodoris pilosa (Muller, 1776)
Family Dotodae
Tenellia ventilabrum (Daiveli, 1853)
Family Favorinidae
Cratena pilata (Gould in Einney, 1870)

Subclass Pulmonata: These are hemaphroditic gastropods with no ctenidium. The mantle cavity is vascularized and functions as a "lung." Complex shelly teeth and ridees commoly occur which help guard the aperture against predators.

Order Basomatophora: These air breathers are dependent on moisture and live in salt marshes. They bear eyes at the tentacular bases as do the prosobranchs. Outer lip of the sinell is toothed or grooved inside. They dwell primarily in salt marshes and on estuarine mud flats.

```
Family Melampidae
    Melampus bidentatus Siy. 182?
    Detracia floridana (Pfeffer. 1856)
```


GLOSSARY OF GASTROPOO TERMS

Aperture The opening from which the head and foot protrude
Apex First formed part of the gastropod shell located at the narrow end and nay be of several whorls

Base The anterior, siphonal end, below the periphery of the body whort

Callus A calcareous deposit or thickening usually around the aperture on the colunellar side

Siphonal Canal . An extension channel of the aperture for the enclosure of the siphons

Anai Canal . . A small canal fomed at the upper or posterior end of the aperture

Columella . . . The solid pillar at the axis of the shell around which the whorls are formed

Length Greatest vertical dimension parallel to the axis of coiling

Protoconch . . . The initial whorls
Operculum A corneous or calcareous attachment on the foot serving as a partial or complete closure of the aperture

Suture The continuous spiral line that marks the junction of each whor 1

Umbilicus The open axis of coiling; a central cavity at the base of the shell

key to the gastropoda of the delaware bay region
(Portions modified from Keen, 1965; R. Turner, unpublished)For terminology, see Plate I and glossary p. 10.
1 Shell not present NUDIBRANCHIA 2
Shell present 5
2 (1) With branchial piumes doubly pinnate arranged in a circle about the anus; with a single pair of tentacles; dorsal surface thickly covered with numerous soft, slender conical papillae of uniform size;
mantle distinct from foot; size 30 min . . . Acanthodoris pilosa
Without circlet of branchial plumes; other dorsal processes(pallial outgrowth) present or absent; with one or twopairs of tentacles3
3 (2) Cerata absent, with a pair of small ctenidia between mantle and foot at posterior end of body in the midline; mantle covers entire body; size 5 min Doridella obscura
Cerata present. 4
4 (3) Single pair of tentacles arising directly from head (without basal sheaths); cerata simple without tubercles; size 7 mm Tenellia ventitabrumTwo pair of tentacles, dorsal tentacles smooth, anteriorlateral corners of foot extended and acutely angled; bodypale gray with white margins, and three longitudinal red-dish interrupted stripes on head and anterior part ofbody; size 30 mm.Cratena pilata
5 (1) Shell patellate, not obviously spirally coiled, with in- ternal shelf, deck or a cup . . . CREPIDULIDAE. 6
Shell obviously spirally coiled 9
6 (5) Shell with internal cup which arises near the center of the shell and flares out to the edge; size 12 nim Calyptraea centralis
Shell with internal shelf or deck 7
7 (6) Shell flattened, apex rarely turned to one side; size 30 mm Crepidula plana
Shell convex, high backed, interior polished, mottled purple, brown mixed with white. 8
8 (7) Small muscle scar anterior doral to right edge of shelf,shelf smooth, margin nearly straight;size 20 mmCrepidula convexa
Muscle scar lacking; shelf marked with wavy growthlines, margin usually sinuous, size 50 mm . Crepidula fornicata
9 (5) Aperture entire, with no anterior canal or notch 10
Aperture with an anterior notch or cana? 36
10 (9) Shell bulloid, spire concealed, aperture as long as shell, surface smooth, size 15 mm Haminoea solitaria
Shell not bulloid 11
11 (10) Shell cylindrical 12
Shell not cylindrical 13
12 (11) Columella with a basal fold, spire only slightly elevated, of 3-5 whorls, aperture not full length of shelt; size 6 mm Acteocina canaliculata
Columella without a basal fold, spire flat or with 1 whor]raised, size 3 mm Retusa obtusa
13 (11) Outline obconic, outer lip strongly lirate within 14
Outline not obconic, outer lip smooth within. 1514 (13) Columella with a moderately large tooth not upturned;size 8 mmDetracia floridana
Columella with two moderately large folds usually upturned;
size 15 mm . Melampus bidentatus
15 (13) Shell trochoid, usually umbilicate;Interior pearly or nacreous16
Shell variously shaped; interior porcelaneous 17
16 (15) Umbilicus set off by a beaded rib or by a change in ribpattern, margined by a strong cord;size 6 mmSolariella obscuraRibbing of umbilical area not differentiated, not marginedby a strong cord; axial sculpture lacking;size 41 mm.Margarites groenlandicus
17 (15) Diameter greater than height; small to minute shells, base of shell umbilicate, with no callus covering, surface smooth, umbilicus narrow and deep; spire only very slightly elevated; size 10 mmSkeneopsis planorbis
Diameter equal to or less than height 18
18 (17) Columella with one or more folds, or inner lip with a strong spiral ridge entering aperture 19
Columella and inner lip smooth. 24
19 (18) Columella with a single thickened oblique fold at base 20Columella with three or more folds near anteriorend of columella. GENUS PYRAMIDELLA
20 (19) Spire sculpture punctate or pitted, spire of 3-5 whorls; size 8 min Acteon punctostriatus
Spire sculpture without interspaces (punctate or pitted)between spiral ribs21
21 (20) Shell sculpture above base beaded, composed of axial ribs and 4 spiral cords; base with spiral cords onty; protoconch elevated; whorls 6-8; size 5 mm Odostomia seminuda
Shell sculpture not beaded 22
22 (21) Spiral sculpture weak or absent 23
Spiral sculpture strong, with 4 or 5 heavy cords above theperiphery and numerous weak cords on the base; whorls 7 ,size 8 minn Odostomia impressa
23 (22) Shell length greater than twice the width, whorls 6 ; shell smooth, columella thickened, twisting into aperture often with two fine ridges; aperature elliptical; size 6 mm Sayella fuscaShell length less than twice the width; apex blunt;whorls 4-5, convex, smooth; size 4 mm Odostomia gibbosa
24 (18) Outline globose to turbinate; length of aperture one-half or more of total length of shell. 28
Outline slender-ovate, turbinate to turritiform; length of aperture always less than one-half total length of shell 25
25 (24) Shell smooth, umbilicus slit-like; whorls 4-5 1/2, usuallyeroded; size 4 mm Hydrobia totteni
Shell sculptured, whorls generally 6 or more 26

26 (24) Axial sculpture of rounded ribs, not extending on to base of shell, whorls flat-sided, sutures slightly impressed; axial ribs 20-24; size 7 mm Turbonilla interrupta

Axial sculpture of strong, often blade-like ribs extending over base of shell

27 (26) Basal ridge present; axial ribs white, 12-18 on body whorl; yellowish white to brown, with 2 darker brown spiral bands near the suture; 11 whorls;
size 20 mm.Epitonium rupicola
Basal ridge absent, axial ribs 8-9, blade-like to rounded; whorls 9-10; china white;
size 19 mm
.Epitonium humphreysi
28 (24) Columella area and anterior (basal) portion of inner aperture broad, flattened and rounding into outer lip 29

Columella and anterior portion of inner aperture not broadened .32

29 (28) Shell globular; spire depressed, smooth or with microscopic spiral lines; bright yellow, greenish brown to nearly black, often spirally banded; whorls 5-6, size 13 mm . Littorina obtusata

Shell trochoid, spire slightly elevated; sculpture of spiral threads or cords, may be obscure on spire of aduits 30

30 (29) Outer lip sloping smoothly into body whorl; whorls flat sided31

Outer lip meeting body whorl at an angle; whorls convex, sutures impressed; grayish-greenish to brownish-white, sometimes spirally banded with white; aperture reddish brown; columella white, tan to dark purple; whorls 6-8; size 18 mm Littorina saxatilis

37 (30) Outer lip crenulate within; whorls $8-10$; parietal lip orange to reddish brown posteriorly; shell grayish white; spiral cords with dark spots or streaks; size 30 mm Littorina irrorata

Whorls 5-7, parietal lip white; shell gray to dark brown or black, spiral cord distinct on young; size 42 mm Littorina littorea

32 (28) Umbilicus covered by thick pad or callus, operculum thick, with a calcareous cuter layer, outer lip meeting body whorl at an angle, 4 whorls, size 32 mmNatica clausa

Umbilicus open to completely covered by a callus, operculum thin, horny, not calcareous
33 (32) Umbilical callus thick; chestnut brown, nearly coveringlarge deep umbilicus; whorls 5 ; light purple-gray to tan;size 72 mm.Polinices duplicatus
Umbilicus open, deep, conspicuous, not nearly occluded by the callus 34
34 (33) Parietal callus thick, truncated at umbilicus; whorls 5 smoothlysloping into preceding whorl; china white with a thingreenish-yellow periostracum; size 8 mm . Polinices immaculatus
Parietal callus not thickened or truncated; whorls notsloping smoothly into preceding whorl35
35 (34) Parietal callus uniformly thin; whorls 5-6, convex, outer lip meeting body whorl at sharp angle; grayish white to brown; interior of aperture brown; size 120 mm . . Lunatia herosParietal callus thickened posteriorly at junction ofouter lip with body whorl; whorls 5, outer lip meetingbody whorl at moderate angle; cream to light brown; usuallywith solid or interrupted spiral bands of bluish or reddish-brown; size 35 mmLunatia triseriata
36 (9) Length of aperture longest dimension of shell; aperture fairly wide, outer lip not denticulate; smooth inner lip twisted at posterior end; spindle-shaped;
size 20 mm. Simnia uniplicata
Length of aperture less than total length of shell 37
37 (36) Aperture with anal canal (notch or slit) at or near suture. 53
Aperture without a posterior anal notch 38
38 (37) Aperture relatively long, three-fourths the length of the shell; spire evident; outer lip smooth; columella with 4 folds, shell shiny, smooth, with 3 faint spiral bands of pale orange, usually with 3 or 4 darker orange spots on margin of outer lip; size 14 mm Marginella roscida
Aperture less than three-fourths length of shell 39
39 (38) Turriform, spire with numerous whorls 40
Not turriform, whorls not especially numerous 42
40 (39) Shell dextral 41Shell sinstral; aperture produced anteriorly into a nearlyclosed tubular siphonal canal; sculpture of beaded spiralcords; whorls 12; size $10 \mathrm{~mm} .$.Trifora nigrocincta

41 (40) Sculpture of axial ribs and spiral cords crossing each
other to give a beaded appearance; 2 or 3 strong smooth
cords on base, siphonal canal very short; whorls 12 ;
brown to black; size 6 mim. Cerithiops is greenii
Sculpture of axial ribs or spiral cords; base smooth; anal canal absent; whorls 10; yellowish-brown to dark brown; size 10 mm.Seila adamsii

42 (39) Siphonal canal set off from body whorl by a constriction or furrow (fossa)

Siphonal canal not set off by a fossa 45
43 (42) Outer 1 ip thin; $8-9$ whor 1 s with 4 or 5 rows of distinct uniform
beads, formed by the crossing of axial and spiral ribs;
shoulder pronounced, suture distinct;
size 25 min Nassarius trivittatus
Outer lip not thin and sharp. 44
44 (43) Shell not eroded, outer 1 ip and parietal callus greatly thickened in adult; whorls 6; axial sculpture of about 12 ribs crossed by spiral cords giving coarsely beaded appearance; shoulder sloping; suture indistinct; size 13 mm .

Nassarius vibex

Shell heavily eroded, forming axial ridges in older speci mens; parietal callus thick in adults; apex of ten eroded, outer lip with 5 or 6 small teeth extending back into aper ture; whorls 5, shell dark reddish-brown to black; common on mud flats and tidal creeks; size 25 mm . . Ilyanassa obsoleta

45 (42) Siphonal canal short to nearly obsolete, outer lip
rounding smoothly to anterior end of shell. 46
Siphonal canal moderate to long, outer lip sinuous. 48
46 (45) Shell with axial ribs or plications 47
Shell without axial ribs or plications, smooth; marked with fine, axial, zig-zag stripes; size 10 mm . . Mitrella lunata

47 (46) Shell with about 12 axial ribs on upper half of whor 1 ; spiral incised lines weak; size 15 mm Anachis avara

Shell with about 15 axial ribs on entire whorl; spiral lines strong; size 15 mb Anachis lafresnayi

48 (45) Outer Jip dentate or lirate within. 49
Outer lip smooth or merely reflecting surface sculpture . . . 50

49 (48) Axial sculpture of rounded ribs; siphonal canal short, more or less open for its entire Tength; outer lip relatively thin, 9-13 axial ribs per whorl;
size 38 mm Urosalpinx cinerea
Axial sculpture of thin, blade-like lamellae (12-14);
siphonal canal nearly closed, tubular; aperture small rounded, outer lip heavy; ten strong spiral cords; size 31 mmEupleura caudata

50 (48) Spire reduced; aperture length three-fourths shell length; siphonal canal long, constricted anteriorly 51

Spire moderately to greatly extended; aperture length less than two-thirds sheli length; siphonal canal variable 52

51 (50) Suture channeled; spiral sculpture of many fine threads, cords at shoulder and edge of channel usually beaded; whorls 6; size 190 mm Busycon canaliculatum

Suture not channeled; sculpture of fine spiral threads on young; absent in adult; shoulder knobbed; lip thickened in adults; whorls 6-8; size 290 mm Busycon carica

52 (50) Whorls flat-sided, sutures not impressed; sculpture of fine spiral incised lines; about 20 between lip and suture; whorls 8; size $125 \mathrm{~mm} C^{\text {Colus }}$ stimpsoni

Whorls convex, sutures impressed; spiral sculpture of fine cords; about 12 between 1 ip and suture; whorls 7-8; size 25 mm Colus pygmaea

53 (37) Axial ribs $10-12$, strong, rounded and crossed by prominent rounded to flattened spiral cords, producing beaded appearance; outer lip thickened in adult, whorls 6-7; size $8 \mathrm{~mm}$. Pyrgocythara plicosa

Axial ribs 8-10, broad rounded, angled and pronounced at shoulder; spiral scuipture of numerous uniform, fine threads; outer lip not greatly thickened; whorls 7-8; size 8 mm Kurtziella cerina

Additional species which may be found in Delaware waters:
Caecum cooperi S. Smith, 1860
Diastoma alterna tum (Say, 1822)
Cerithiopsis emersoni (C.B. Adams, 1838)
Epitonium angula tum (Say, 1830)
Crucibulum striatum Say, 1824
Natica pusilla Say, 1822

Additional species which may be found in Delaware waters: (continued)
Colus pubescens (Verrill, 1882)
Busycon contrarium (Conrad, 1840)
Terebra dislocata (Say, 1822)
Mangelia dalli (Verrill, 1882)
Odostomia dux Dall and Bartsch, 1906
Odostomia trifida (Totten, 1834)
Odostomia bisuturalis (Say, 1821)
Turbonilla stricta Verrill, 1873
Ovatella myosotis (Craparnaud, 1801)
Aeolidia pilillosa (Linne, 1761)
Doto cornuta (McMillan, 1791)
Cuthona concinna (Adler and Hancock, 1843)

CLASS SCAPHOPODA
(GK. skaphe, trough; podos, foot). These molluscs produce a tubular calcareous shell open at both ends. The long conical foot, genital openings, mouth, and feeding appendages (captacula) function through the larger opening. A radula is present, but there are no eyes, tentacles, or gills. Respiration takes place through the lining (epithelium) of the mantle. There is no heart or pericardium as blood circulates through contracting sinuses. The sexes are separate.

Family Dentaliidae
Dentalium occidentale Stimpson, 1851
Family Siphonodentaliidae
Cadulus agassizii Dall, 1881

CLASS BIVALVIA

(L. bis, twice; valvae, folding doors). The lamellibranchs are the second largest group of Mollusca; most are marine, but some live in fresh water. There is no head, no buccal mass, and no radula. The soft parts are enclosed within two hinged valves (bivalve). The valves
open by use of a ligament (external or internal) and are closed by the adductor muscie (one to three). The gills (ctenidia) are contained in the mantle cavity and are bipectinate. Most bivalves feed by ciliary and mucous movement on the gills and palps. The posterior part of the mantle is modified into siphons or apertures. Sexes are generally separate, although some may be hermaphroditic. Larvae are either veligers or glochidia. In classifying the Bivalvia, we have adopted the work of Vokes (1967) and Moore (1969). Abbott (1974) was also used in characterizing some of the orders.

Subclass Palaeotaxodonta: The nuculoids have taxodont dentition with either nacreous or crossed lamellar shell structure and are equivalved.

Order Nuculoida: Gills are in primitive posterior position; their filaments are triangular in two divergent rows (protobranch) on opposite sides of axis; modified labial palps used to collect food; foot is grooved usually without a byssus, marine.

Family Nuculidae
Nucula proxima Say, 1822
Family Nuculanidae
Yoldia limatula Say, 1831

Subclass Cryptodonta: Primitive, elongate, thin shelled, equivalve clams without hinge teeth. The mineral portion of the shell is made of aragonite.

Order Solemyoida: Periostracum thick and extending beyond the edge of the thin shell which gaps at both ends; gills protobranchiate. This is a primitive group with no near relatives.

Family Solemyacidae
Solemya velum Say, 1822

Subclass Pteriomorphia: Sedentary bivalves with free mantle margins, usually with a byssus or other means of fixation. Having a filibranchiate gill structure. The foot and anterior adductor usually becoming reduced or lost.

Order Arcoida: Represented by the ark shells with two equal size adductor muscles. Cardinal areas flat on the dorsal margin.

Family Arcidae
Anadara ovalis (Bruguiere, 1789)
Anadara transversa (Say, 1822)
Noetia ponderosa (Say, 1822)

Order Mytiloida: Represented by the true mussels and Pinna shells. Shells are inequilateral, but equivalve; usually having a strong byssus. Shell structure is prismato-nacreous. Without well developed siphons.

Family Mytilidae
Mytilus edulis Linne, 1758 Crenella glandula (Totten, 1834)
Modiolus modiolus (Linne, 1758)
Geukensia demissa (Di17wy, 1817)

Order Pterioida: Represented by oysters, scallops. Generally inequivalve and inequilateral; ligament composed of uncalcified conchiolin is divided into one or more parts. Pallial sinus absent, shell pearly or porcelaneous, prismato-nacreous.

Family Pectinidae

Argopecten irradians (Lamarck, 1819)
Placopecten magellanicus (Gmelin, 1791)

Family Anomiidae
Anomia simplex Orbigny, 1842
Family Ostereidae
Crassostrea virginica (Gmelin, 1791)

Subclass Heterodonta: Represented by two living orders, the Veneroida and Myoida. These probably contain over half of the known marine species and genera. Siphons usually developed with mantle lobes more or less joined. Usually possessing distinct cardinal and lateral teeth. Ligament located posteriorly. Shell material never nacreous. Gills are eulamellibranchiate. Generally nestle or burrow in diverse substrata.

Order Veneroida: Commonly equivalve with equal-size muscle scars. Hinge usually with cardinals and laterals rarely with only cardinals or no teeth.

Family Lucinidae
Lucinoma filosa (Stimpson, 1851)
DivaricelTa quadrisulcata (Orbigny, 1842)
Family Cyrenoididae
Cyrenoida floridana (Dall, 1896)
Family Lasaeidae
Aligena elevata (Stimpson, 1851)
Family Leptonidae
Mysella planulata (Stimpson, 1857)
Family Carditidae
Cyclocardia borealis (Conrad, 1831)

Family Astartidae
Astarte undata Gould, 1841
Astarte castanea (Say, 1822)
Astarte borealis (Schumacher, 1817)
Family Cardijdae
Cerastoderma pinnulatum (Conrad, 1831)
Family Mactridae
Spisula solidissima (Dillwyn, 1817)
Mulinia lateralis (Say, 1822)
Rangia cuneata (Sowerby, 1831)
Family Solenidae
Siliqua costata Say, 1822
Ensis directus Conrad, 1843
Solen viridis Say, 1821
Family Tellinidae
Tellina agilis Stimpson, 1857
Macoma balthica (Linné, 1758)
Macoma tenta (Say, 1834)
Family Donacidae
Donax variabilis Say, 1822
Family Semelidae
Abra lioica (Dall, 1881)
Family Solecurtidae
Tagelus plebeius (Lightfoot, 1786)
Tagelus divisus (Spengler, 1794)
Family Arcticidae
Arctica islandica (Linné, 1767)
Family Veneridae
Mercenaria mercenaria (Linné, 1758)
Pitar morrhuana (Linsley, 1848)
Gemma gemma (Totten, 1834)
Family Petricolidae
Petricola pholadiformis (Lamarck, 1818)

Order Myoida: Thinwshelled burrowing bivalves with well developed siphons. Hinge with one cardinal tooth in each valve or teeth lacking (edentulous). Lunule and escutcheon poorly developed or lacking. Shell material not nacreous.

Family Myidae
Mya arenaria Linné, 1758
Paramya Subovata (Conrad, 1845)
Family Corbulidae
Corbula contracta Say, 1822
Family Pholadidae
Barnea truncata (Say, 1822)
Cyrtopleura costata (Linné, 1758)

Family Teredinidae

Bankia gou7di Bartsch, 1908

Subclass Anomalodesmata: Group of great antiquity with many recent and fossil specimens dating back to early Paleozoic. Generally have poorly developed cardinals without laterals, mantle margin fused.

Order Pholadomyoida: Represented by the Pandoras, cuspidarians. Burrowing or nestling species which are equivalve to subequivalve with a primitive hinge. Eulamellibranchs constitute the living forms, while most fossil forms were septibranchs.
Family LyonsiidaeLyonsia hyalina Conrad, 1831
Family Pandoridae
Pandora gouldiana Da71, 1886Pandora trilineata Say, 1822
Family Periplomatidae
Periploma leanum (Conrad, 1831)

GLOSSARY OF BIVALVE TERMS

muscle scars. Striated scars on the interior of the sh left from the attachment of the muscles that control the closing of the valves
Anterior end End from which the foot usually protrudes, opposite the end where the siphons protrude, also the end where the lunule is located opposite the position of the ligament in majority of the bivalves
Apophysis In the Pholad clams especially a thin shelly fingerlike projection found in the interior of each valve extending out from under the beak (umbo)
Umbo (Beak) Located on the dorsal margin of the shell, the small tip of the shell usually located above the hinge. The first formed part of the valve
Byssus. A bundle of tough conchiolin threads spun by the foot and used in attachment to the substr as in the Mytilidae
Chondrophore. Spoon-shaped resilifer or shelf in the hinge, holds the resilium or cartilage
Dimyarian Adductor muscle scars of the same shape and size
Equilateral Posterior and anterior halves of the valve are the same shape and size, umbones being in the center
Equivalve Both valves of equal shape and size
Escutcheon. The smooth, long surface on the dorsal margin behind the ligament, located opposite the lunule
Heteromyarian Adductor muscle scars of dissimilar shape and size, one much larger than other
Inequilateral Posterior and anterior halves of the valve are unequal in shape and size
Inequivalve Valves are dissimilar in shape and size, one being larger than other

\(\left.\begin{array}{l}Length. The greatest dimension of the shell measured

by aline bisecting the adductor muscle scars,

running posterior to anterior\end{array}\right\}\)| Ligament. A band of tough elastic fibers generally posterior |
| :--- |
| to the beaks located internally or externally |

Plate 2. Parts of the bivalve shell (Keen, 1963).
key to the bivalye moliusca of the delamare bay region
(Portions modifjed from Keen, 1965; Turgeen, 1968)
For terminology, see Plate 2 and glossary pp. 25-26.
1 Shell with an apophysis or myophore in both valves 2
No apophysis or myophore present 5
2 (1) Anterior end indented by an angular notch; shipworms, wood burrowers 3
Anterior end arcuate or everily curved 4
3 (2) Posterior end of animal bearing paddle shaped pallets. . Teredo
Pallets elongate or cone-in-cone type. Only wood burrower occurring in our region; maximum size 3.2 cm . Bankia gouldi
4 (2) Shell rectangulate, anterior pointed, posterior truncate; gaping at both ends: protoopiax lacking, radial ribs; maximum size 7.0 cm . Barnea truncata
Shell oval, rounded at both ends tapering posteriorly withonly a slight gap, protoplax present, bead radial ribs;maximum size 17.0 cm.Cyrtopleura costata
5 (1) Taxodont dentition 6
Dentition other than taxodont. 10
6 (5) Ligament internal and confined to a central pitHinge line curved. NUCULACEA 7
Ligament external not confined to a central pitHinge line straight. ARCACEA.8
7 (6) Interior of valves nacreous, shell symetrical, obliquelyovate, closing tightly; pallial sinus lacking;maximum size 1.5 cm. Nucula proxima
Interior not nacreous, shell asymmetrical, elongate, gapingwidely; pallial sinus deep;
maximum size 6.5 cm Yoldia 1 imatula
8 (6) Left valve extending beyond right; beaks point towardanterior or center of shell; adductors impressed9
Valves of same size, beaks point posteriorly; adductorselevated, posterior muscle scar raised to form a weakflange; maximun size 6.5 cm. Noetia ponderosa
9 (8) Beaks directed centrally; ribs on left valve usuallybeaded; external 1 igament long, wide, very distinct;maximum size 4.0 cm Anadara transversaBeaks directed anteriorly; ribs on left valve square,external ligament not as long or wide;maximum size 6.0 cm. Anadara ovalis
10 (5) Valves with one adductor muscle scar, monomyarian. 11
Valves with two adductor muscle scars. 14
11 (10) Dorsal margin produced anteriorly and posteriorly into triangular ears 12
Dorsal margin not eared. 13
12 (6) Both valves with strong radial sculpture; maximum size 7.5 cm . Argopecten irradians
Valves without radial sculpture; maximum size 20.0 cm Placopecten magellanicus
13 (11) Adductor scar complex, central area showing superimposed secondary scars; right valve with prominent hole from calcified byssus attachment to substrate, shells thin, somewhat translucent, smooth; maximum size 5.0 cm . Anomia simplex
Adductor scar simple, valves thick, opaque, rough; maximum size 15.0 cmCrassostrea virginica
14 (10) Adductor muscle scars very unequal, heteromyarian; pallial sinus lacking. 15
Adductor muscle scars about the same size dimyarian (not necessarily the same shape), pallial sinus may be present 1715 (14) Beaks terminal, shell smooth, blue-black with shinyperiostracum, hinge with 3-12 crenulations;maximum size 7.5 cm. Mytilus edulis
Beaks near anterior end but not terminal 16
16 (15) Radial ribs strong, rough, bifurcating, no teeth at umbo;Black-brown; maximum size 10.0 cm.Geukensia demissaRadial ribs fine, may be slightly beaded and of tencrossed with finer concentric threads, olive brown;common offshore, cold-water species;maximum size 1.2 cm.Crenella glandula
17 (14) Dorsal margin with cardinal and/or lateral teeth 21
Dorsal margin lacking teeth; irregular denticles may be present 20
18 (17) Periostracum prolonged as a fringe beyond margins of shell; fragile shell, elongated and gaping at both ends, delicate, shiny brown periostracum, light radial bands of yellowish- brown coloration may be present;
maximum size 2.5 cm Solemya velum
Periostracum if present not prolonged beyond margins 19
19 (18) Nearly equivalve, moderately convex; sinus very slight indistinct; with numerous radial lines; contains ag- glutinated sand grains; shell thin, fragile; maximum size 2.5 cm . . Lyonsia hyalina
Inequivalve, flattened or compressed without periostracum. Sinus represented by a series of separate small muscle scars. 20
20 (19) Height slightly more than $1 / 2$ the length; posterior rostrum on the hinge line very short, stubby; maximum size 3.5 cm Pandora gouldiana
Height less than $1 / 2$ length; posterior rostrum extended,more elongate; maximum size $2.4 \mathrm{~cm} .$. . . Pandora trilineata
21 (17) Valves elongate, razor shaped. 22
Valves otherwise 26
22 (21) Beaks at or near anterior end. SOLENACEA 23
Beaks sub-central. SOLECURTIDAE 25
23 (22) Beak in anterior fourth of shell; shell ovate - elongate; internal raised rib for support; right valve with bifid lateral; periostracum smooth, glossy; maximum size 6.3 cm.Siliqua costata
Beak at far anterior end; shell elongate - rectangulate; raised rib lacking 24
24 (23) Two cardinals and one lateral in left valve, one cardinal and one lateral in right valve; dorsal and ventral margin curving slightly dorsally; maximum size 25 cm . . Ensis directus
One cardinal in each valve, laterals lacking;dorsal and ventral margins straight;maximum size 5.0 cm. Solen viridis
25 (22) Pallial sinus equal in size extending to midline,shell oblongate with anterior truncate, with largebulbous callus behind the two small cardinal teeth;maximum size 10.0 cm. Tagelus plebiusAs above except the valves are reinforced internally bya very weak, radial rib running across the center of thevalve just anterior to the two small cardinal teeth.
26 (21) Valves with well developed radial ribs 27
Radial ribs, if present, weak or faint 29
27 (26) Cardinal teeth fewer than three in either valve; lateral teeth present, two cardinals and two laterals in each valve; ligament external; 22-28 wide, flat ribs with arched scales may be missing on the central portion of valve; maximum size 7.2 cm Cerastoderma pinnulatum
Cardinal teeth three in one vaive, two in other. 28
28 (27) Two cardinal teeth in left valve and three in right valve; 18-20 rounded moderately rough or beaded radial ribs; inner ventral margin crenulated; laterals absent;
maximun size 2.5 cm. Cyclocardia borealisTwo cardinal teeth in right valve and three in left valve;40 or niore prominent radial ribs with fine concentric lines.The anterior 10 or so are larger and bear prominent scales;maximum size 6.4 cm. Petricola pholadiformis
29 (27) Hinge with a chondrophore or a large, mostly horizontal pro- jecting tooth in one valve, a socket or gap in the other 30
Hinge with similar tooth structures in either valve. 31
30 (29) Equivalve, roundiy ovate; large spoon-shaped projecting chondrophore in left valve; anterior adductor elongate; suboval, pallial sinus somewhat V-shaped; maximum size 15.5 cm Mya arenaria
In equivalve, oblong; single slender cardinal tooth;posterior end rostrate, ventra? margin contracted nearcenter of shell; left valve has a V-shaped notch in hingejust anterior to beak; has many weak concentric raised ines;maximuit size 12.0 cm Corbula contracta
31 (29) With a well developed pallial sinus 32
Pallial sinus lacking, pallial line entire or obscure. 42
32 (31) Chondrophore present 33
Chondrophore lacking 35

33 (32) Ligament external and internal; chondrophore large, broad spoon-shaped; lateral teeth bear serrated or saw-teeth ridges;
maximum size 77.5 cmSpisula solidissima
Ligament internal; chondrophore small, triangular;
laterals lacking serrations. 34
34. (33) Shell triangulate with posterior radial ridge; left valve with two laterals, right with four; moderately inflated, beaks near center of shell;
maximum size 2.5 cm. Mulinia lateralis
Shell obliquely ovate, strong radial ridge lacking,
left valve with two laterals, right with three; beaks near anterior end, high and inrolled anterior - ventrally; low salinity organism;
maximum size 6.5 cm Rangia cuneata
35 (32) One valve with at least three cardinal teeth 36
Each valve with a maximum of two cardinal teeth 38
36 (35) Hinge with laterals lacking or with obsolescent knob in anterior of left valve; periostracum distinct. 37

Hinge with two distinct laterals; periostracum inconspicuous; color whitish to tan with purplish overtones around beak, pallial sinus points dorsally;
maximum size 0.7 cmGemma gemma
37 (36) Laterals lacking; margins crenulate; pallial sinus shallow, left central cardinal tooth split; shell thick solid, moderately inflated;
maximum size 13.0 cm Mercenaria mercenaria
Anterior lateral in left valve knoblike; margins smooth; pallial sinus deep;
maximum size 5.0 cm.Pitar morrhuana
38 (35) Shells light or fragile; each valve with two cardinals, one lateral or none; margins smooth39

Shells moderately heavy, firm; left valve with two cardinals and two laterals, right valve with one cardinal and two laterals; margins crenulate; maximum size 1.2 cm. Donax variabilis

39 (38) Right valve with distinct anterior lateral; ligament externai and prominent, curved ventral margin;
maximum size 2.0 cm. Tellina agilis
Right valve with anterior laterals obsolescent
or lacking . 40
40 (39) Shell smooth, orbicular, fragile, moderately inflated,equivalve; beaks nearer anterior end; two cardinals ineach valve may be rudimentary in left valve. Pallialsinus deep; same size in both valves;maximum size 0.8 cm. Abra lioicaShell ovate; laterals lacking in right valve; pallialsinus extending further in one valve than other.41
41 (40) Shell broadly ovate, not gaping; sinus extending further toward anterior adductor in right valve; maximum size 3.8 cm . Macoma balthica
Shell oval - elongate, posterior truncate and gapingmoderately; sinus extending further toward anterior adductorin left valve; maximum size 2.0 cm Macoma tenta
42 (31) Anterior adductor scar narrower and longer than posterior, its lower end detached and bent inward 43
Adductor scars approximately equal in shape 44
43 (42) Sculpture of sharp, raised, thin, concentric ridges, shellcompressed; inner margin smooth; laterals obsolete,cardinal teeth bifid;maximum size 7.6 cm Lucinoma filosaSculpture of fine, criss-cross or divaricate, impressedlines; inner margin denticulate, shell moderately inflated;lateral hinge teeth well-developed;maximum size 2.0 cmDivaricella quadrisulcata
44 (42) Ligament sunken to completely internal 45
Ligament external, seated on a nymph 46
45 (44) Shell smooth, not concentrically ribbed, inequilateral cardinals wanting in one valve, two laterals in each valve; maximum size 0.5 cmMysella planulata
Sculpture of fine concentric growth lines, two cardinalsin each valve, laterals lacking;maximum size 0.5 cm.Aligena elevata
46 (44) Valves thin shelled, pallial line indistinct;orbjcular shaped brackish-water clams, hinge withtwo cardinals, the right valve having its anteriorone bifid. maximum size 1.5 cmCyrenoida floridana-
Valves thickened, strong; pallial line distinct; stenohaline marine 47
47 (46) Shells with no sculpture apart from irregular growth rings 48
Shells with concentric sculpture 49

48 (47) Shells circular in outline, equivalve, periostracum thick and black-brown, no lunule or escutcheon; maximum size 12.7 cm Arctica islandica

Shell triangular in shape, compressed, large shallow lunule, smooth except for weak, low concentric lines; inner margin of valves finely crenulate;
maximum size 2.5 cm. Astarte castanea
49 (47) Concentric ridges strong near the beaks, but disappearing near the margins of the valves; inner margin of valves smooth; maximum size 5.0 cm Astarte borealis

Concentric ridges strong throughout and evenly spaced; inner margin of valves may be crenulate; maximum size 3.2 cm. Astarte undata

Additional species which may be found in Delaware waters:
Amygda]um papyrium (Conrad, 1846)
Brachidontes recurvus (Rafinesque, 1820)
Cardiomya gemma (Verrill and Bush, 1898)
Congeria leucopheata (Conrad, 1831)
Corbula swiftiana (C.B. Adams, 1852)
Cumingia tellinoides (Conrad, 1831)
Cyctinel1a tenuis (Récluz, 1852)
Diplodonta (timothynus) verrilli Dall, 1900
Diplothyra smithij (Tryon, 1862)
Donsinia discus (Reeve, 1850)
Hiatella arctica (Linné, 1767)
Labiosa (labiosa) plicatella Lamarck, 1818
Laevicardium mortoni (Conrad, 1830)
Macoma phenax Dal], 1881
Mesodesma arctatum (Conrad, 1830)
Modiolus modiolus (Linné, 1758)
Musculus niger (Gray, 1824)
Nuculana acuta (Conrad, 1831)
Nuculana annulata Hampson, 1970
Pandora glacialis Leach, 1819
Pandora inflata Boss and Merrill, 1965
Paramya subovata (Conrad, 1845)
Parastarte triquetra (Conrad, 1831)
Periploma leanum (Conrad, 1831)
Thyasira gouldi (Philippi, 1845)
Thyasira trisinuata (Orbigny, 1842)
Yoldia sapotilla (Gould, 1841)

CLASS CEPHALOPODA

(GK. Cephaie, head; podos, foot). Cehaplopods are the most highly developed of all molluscs. The shell is generally internal, some may be external (i.e. Nautilus) or lacking. The head is large with complex eyes, and the mouth with jaws and radula is surrounded by 8 or 10 arms or many tentacles. They have a "brain" enclosed in a cartilage-like case. Modification of the foot and mantle have made them most fast moving carnivores.

Order Teuthoidea: They possess two long tentacular arms which are retractable, and a circlet of 8 short arms. The tentacles have clusters of suckers at the tip while the short arms generally bear them in several rows along the under surface. Each sucker has a horny ring.

Family Loiiginidae
Loligo pealeii Lesueur, 1821
Lolliguncula brevis (Blainville, 1823)
Family Ommastrephidae
I11ex illecebrosus (Lesueur, 1821)
Order Vampyromorpha: These possess 8 arms, all of which are long and tentacular; the suckers run all along the ventral surface and have no horny rings.

Family Octopodidae
Octupus vulgaris Cuvier, 1797

KEY TO THE CEPHALOPODA OF THE DELAWARE BAY REGION

1 Body globose, usually without fins; eight arms with one to three rows of sessile suckers Order Octopoda.

Body more or less elongate, with fins; eight short arms
and a pair of longer, tentacular, retractile arms, suckers
pedunculate with horny rings. 2
2 Body elongate torpedo-shaped, fin pattern rhomboid in adults. Loligo pealei
Body shortened, stub-like; mantle length three to four times smaller than L. pealei; fin pattern ellipsoidal
. Lolliguncula brevis

Additional species which may be found in Delaware waters:
Illex illecebrosus (Lesueur, 1821)
TTlex oxygonius Ropes, Li and Mangold, 1969 Granelodone verrucosa Verrill, 188]

Abbott, R.T., 1954. American Seashells. D. Van Nostrand Company, Inc., Princeton, New Jersey, 541 pp.

Abbott, R.T., 1968. Seashells of North America (A Guide to Field Identification). Golden Press, Western Publishing Company, Inc., New York, N.Y., 280 pp.

Abbott, R.T., 1974. American Seashells. Second Edition, Van NostrandReinhold Company, New York, N.Y., 663 pp.

Arnold, W.H., 1965. A glossary of a thousand and-one terms used in conchology. Veliger 7: Supplement, 50 pp .

Bousfield, E.L., 1960. Canadian Atlantic Sea Shells. Minister of Northern Affairs and National Resources, Ottawa, Canada, 72 pp.

Johnson, C.W., 1934. List of marine Mollusca of the Atlantic Coast from Laborador to Texas. Proc. Boston Soc. Nat. Hist., Vol. 40, No. 1, 204 pp.

Keen, A.M., 1965. Marine Molluscan Genera of Western North America. Stanford University Press, Stanford, California, 126 pp.

Moore, R.C., 1969. Editor. Treatise on Invertebrate Paleontology. Part N. Vols. 1-3, Geol. Soc. Amer.

Morris, P.A., 1973. A Field Guide to the Shells (of Our Atlantic and Gulf Coasts). Third Edition, edited by W.J. Clench. Peterson Field Guide Series. Houghton Mifflin Co., Boston, Mass., 330 pp .

Morton, J.E., 1967. Molluscs. Hutchinson University Library, London, 244 pp.

Vokes, H.E., 1967. Genera of the Bivalvia: A systematic and bibliographic catalogue. Bull. Amer. Paleontol., Vol. 51, No. 232.

Wood, A.E. and H.E. Wood, 1927. A quantitative study of the marine mollusks of Cape May County, New Jersey. The Nautilus 41 (1): 8-18.

BIBLIOGRAPHY FOR THE BIVALVIA

Ansell, A.0., 1967. Burrowing in Lyonsia norvegica (Gmel in) (Bivalvia: Lyonsiidae). Malacol. Soc. London, Proc. 37: 387-393.

Allen, J.F., 1954. The influence of bottom sediments on the distribution of five species of bivalves in the Little Annemessex Rivers, Chesapeake Bay. Nautilus 68: 56-65.

Allen, J.F., 1955a. A note on Amygdalum papyria Conrad in Maryland waters of Chesapeake Bay. Nautilus 68 (3): 83-87.

Boss, K.J., 1966. The subfamily Tellininae in the western Atlantic. the genus Tellina (Part I). Johnsonia 4 (44): 181-216.

Boss, K.J., 1968. The subfamily Tellininae in the western Atlantic. The genus Tellina (Part II). Jonnsonia 4 (46): 273-344.

Boss, K.J. and A.S. Merrill, 1965. The family Pandoridae in the western Atlantic. Johnsonia 4 (44): 181-216.

Calabrese, A., 1969. Reproductive cycle of the coot clam, Mulinia lateralis (Say), in Long Island Sound. Veliger 12 (3): 265-269.

Carriker, M.R., 1961. Interrelation of functional morphology, behavior, and autecology in early stages of the bivalve, Mercenaria mercenaria. J. Elisha Mitchell Sci. Soc. 77: 168-241.

Castagna, M., 1970. Hard clam culture method developed at VIMS. Sea Grant Adv. Serv. Proj. No. 4.

Castagna, M. and P. Chanley, 1966. Salinity tolerance and distribution of Spisula solidissima, Mulinia lateralis, and Rangia cuneata, family Mactridae. Ann. Rept. Amer. Malacol. Union, p. 35.

Castagna, M. and P. Chanley, 1973. Salinity tolerance of some marine bivalves from inshore and estuarine environments in Virginia waters on the western mid-Atlantic coast. Malacologia 12 (1): 47-96.

Clench, W.J. and L.C. Smith, 1944. The family Cardijdae in the western Atlantic. Johnsonia 1 (13): 1-32.

Clench, William J., and Ruth D. Turner, 1946. (Teredinidae), The genus Bankia in the Western Atlantic. In: Johnsonia Monographs of the Marine Mollusks of the Western Atlantic. Vol. 2, No. 19.

Drew, G.A., 1899. The anatomy, habits and embryology of Yoldia limatula Say. Johns Hopkins Univ. Biol. Mem. 4: 1-37.

Drew, G.A., 1907. The habits and movements of the razor shell clam, Ensis directus. Biol. Bull. 12: 127-138.

Fairbanks, L.D., 1962. Biodemographic studies of the clam, Rangia cuneata (Gray). Tulane Stud. Zool. 10: 3-47.

Galtsoff, P.S., 1964. The American oyster Crassostrea virginica (Gmelin). U.S. Fish. Bull. 64: 1-480.

Geesteranus, R.A. Mass., 1952. On the formation of banks of Mytilus edulis L. Arch. Neerl. Zool. 10: 283-326.

Hampson, G.R., 1971. A species pair of the genus Nucula bivalvia from the eastern coast of the United States. Proc. Malac. Soc. Lond. 39: 333.

Hanks, R.W., 1969. The genus Sphenia in the western North Atlantic with observations on other Myidae. Ph.D. Thesis, Univ. N. Hamp., 1-94.

Leathem, W. and B. Maurer, 1975. Northern range extension of Paramya subovata (Superfamily Myacea). Nautilus 89 (3): 72.

Leathem, W. and 0. Maurer, 1975. Northern range extension of the Florida marsh clam, Cyrenoida floridana (Superfamily Cyrenoidacea). Nautilus (in press).

Levinton, J.S., 1974. Trophic group and evolution in bivalve molluscs. Palaeontology, Vol. 17, Part 3, pp. 579-585.

Lim, C.F., 1966. A comparative study of the ciliary feeding mechanisms of Anadara species from different habitats. Biol. Bull. 130: 106-117.

Loosanoff, V.L., 1956a. Two obscure oyster enemies in New England waters. Science 123 (3208): 1119-1120.

Loosanoff, V.L., 1956b. Preliminary experiments on development of a new mechanical method for control of oyster drills. Milford Biol. Lab., U.S. Fish \& Wildlife Serv. 20 (13): 1-2.

Loosanoff, V.L. and J.B. Engle, 1941. Little known enemies of young oysters. Science 93 (2414): 328.

Maurer, D., L. Watling, and G. Aprill, 1974. The distribution and ecology of common marine and estuarine pelecypods in the Delaware Bay area. Nautilus 88 (2): 38-45.

McErlean, A.J., 1964. Characteristics of Macoma balthica populations in the Middle Patuxent estuary. Ches. Sci. 5 (4): 200-208.

Scheltema, R.S. and R.V. Truitt, 1954. Ecological factors related to the distribution of Bankia gouldi Bartsch in Chesapeake Bay. State of Maryland Board of Natural Resources, Publication No. 100.

Stanley, S.M., 1970. Relations of shell form to life habits of the Bivalvia (Mollusca). Geological Society of America, Mem. 125 : 296 pp.

Swan, E.F., 1952. Growth of the clam Mya arenaria, as affected by the substratum. Ecology 33: 530-534.

Turgeen, D.D., 1968. Guide to estuarine and inshore bivalves of Virginia. Master's Thesis, p. l-126. College of William and Mary, Virginia.

Turner, H.J. and 0.L. Belding, 1957. The tidal migrations of Donax variabilis (Say). Limnol. \& Oceanogr. 2: 120-124.

Turner, Ruth D., 1954. The Family Pholadidae in the Western Atlantic and the Eastern Pacific. Part I. Pholadinae. In: Johnsonia Monographs of the Marine Mollusks of the Western Atlantic. Vol. 3, No. 33.

Turner, Ruth D., and D.J. Brown, 1953. The genus Bankia in the Western Atlantic. In: Johnsonia Monographs of the Marine Mollusks of the Western Atlantic. Vo1. 2, No. 32.

Allen, J.A., 1958. Feeding habits of two species of Odostomia. Nautilus 72: 11-15.
Apley, M.L., 1970. Field studies on life history, gonadal cycle and reproductive periodicity in Melampus bidentatus (Pulomonata: Ellobiidae). Malacologia 10 (2): 381-397.

Bartsch, P., 1909. Pyramidellidae of New England and the adjacent region. Proc. Boston Soc. Nat. Hist. 34: 67-113.

Carriker, M.R., 1951. Observations on the penetration of tightly closed bivalves by Busycon and other predators. Ecol. 32 (1): 73-83.

Clench, W.J. and R.O. Turner, 1950. The western Atlantic marine mollusks described by C.B. Adams. Mus. Comp. Zool. Occ. Pap. on Mollusks. 1 (15): 233-403.

Clench, W.J. and R.D. Turner, 1951. The genus Epitonium in the western Atlantic, Part I. Johnsonia 2 (30): 249-288.

Franz, D.R., 1967. On the taxonomy and biology of the dorid nudibranch Doridella obscura Verrill. Nautilus 80 (3): 73-79.

Franz, D.R., 1968. Occurrence and distribution of New Jersey Opisthobranchia. Nautilus 82 (1): 7-12.

Franz, D.R., 1970a. Substrate diversity and the taxonomy of Crepidula convexa (Say) (Gastropoda: Prosobranchia). Univ. Conn. Occ. Pap. 1(4): 281-289.

Franz, D.R., 1970b. Zoogeography of northwest Atlantic opisthobranch molluscs. Mar. Biol. 7: 171-180.

Fretter, V. and A. Graham, 1949. The structure and mode of life in the Pyramidellidae, parasitic opisthobranchs. Jour. Mar. Biol. Ass. U.K. 28: 493-532.

Haefner, P.A., 1964. Morphometry of the common Atlantic squid, Loligo pealei, and the brief squid, Lolliguncula brevis in Delaware Bay. Ches. Sci. 5 (3): 138-144.

Hanks, J.E., 1953. Comparative studies on the feeding habits of Polinices heros and Polinices duplicata relative to temperature and salinity. Fourth Ann. Conf. Clam Res. U.S. Fish \& Wildlife Serv., Boothbay Harbor, Maine: 88-95. UMS.

Hanks, J.E., 1957. The rate of feeding of the common oyster drill, Urosalpinx cinerea (Say) at controlled water temperatures. Biol. Bull. 112: 330-335.

Hauseman, S.A., 1932. A contribution to the ecology of the salt-marsh snail. Melampus bidentatus Say. Amer. Natur. 66: 541-545.

Hopkins, S.H., 1956. Odostomia impressa parasitizing southern oysters. Sci. 124 (3223): 628-629.

Hurst, A., 1965. The feeding habits of Nassarius vibex (Say). Proc. Malac. Soc. Lond. 36: 313-317.

Leathem, W.A. and D. Maurer, 1975. The distribution and ecology of common marine and estuarine gastropods in the Delaware Bay area. Nautilus 89 (3): 73-79.

Loveland, R.E., G. Hendler, and G. Newkirk, 1969. New records of nudibranchs from New Jersey. Veliger 11 (4): 418-420.

Lowden, R.D., 1965. The marine Mollusca of New Jersey and Delaware Bay, an annotated checklist. Proc. Phil. Shell Club 1 (8-9): 5-61.

Manzi, U., 1970. Combined effects of salinity and temperature on the feeding, reproductive, and survival rates of Eupleura caudata (Say) and Urosalpinx cinerea (Say) (Prosobranchia: Muricidae). Biol. Bull. 138 (7): 35-46.

Marcus, E., 1958. On western Atlantic opisthobranchiate gastropods. Amer. Mus. Nat. Hist. Novitiates 1906: 1-82.

Moore, G.M., 1950. Progress report on investigations of the nudibranchiata of New England. Biol. Bull. 99: 352-353.

Moore, G.M., 1964. Phylum Mollusca: Opisthobranchia. In Keys to Mar. Invert. of Woods Hole Region, R.I. Smith (Ed.), Contrib. No. 11, Systematics-Ecology Program, Woods Hole, Massachusetts. pp. 153164.

Nagabhushanam, R. and R. Sarojini, 1963. Resistance of the mud snail, Nassarius obsoletus, to high temperature. Indian Jour. Exper. Biol. 1 (3): 160-161.

Scheltema, A.H., 1965. Two gastropod hosts of the pyramidellid Odostomia bisuturalis. Nautilus 79: 7-10.

Scheltema, A.H., 1968. Redescriptions of Anachis avara (Say) and Anachis translirata (Ravene1) with notes on some related species (Prosobranchia, Columbellidae). Breviora 304: 1-19.

Scheltema, R., 1964a. Feeding habits and growth in the mud snail Nassarius obsoletus. Ches. Sci. 5 (4): 161-166.

Scheltema, R., 1964b. Reproduction of Nassarius trivittatus off the coast of Georgia. Nautilus 78: 49-50.

Scheltema, R. and A.H. Scheltema, 1963. Pelagic larvae of New England intertidal gastropods II. Anachis avara. Hydrobiologia 22 (1-2): 85-91.

Scheltema, R. and A.H. Scheltema, 1966. Ibid. III. Nassarius trivittatus. Hydrobiologia 25 (3-4): 321-329.

Stauber, L., 1943. Ecological studies on the oyster drill, Urosalpinx cinerea, in Delaware Bay, with notes on the associated drill, Eupleura caudata, and with practical consideration of control methods. Unpubl. Rept. Oyster Res. Lab., N.J. 1-180.

Swennen, C., 7961. The nudibranchiate molluscs occurring in the Netherlands. Netherlands Jour. Sea Res. 1 (1-2): 191-240.

Wells. H.W., 1959. Notes on Odostomia impressa (Say). Nautilus 72 (4): 140-144.

Wells, H.W., 1965. Maryland records of the gastropod, Littorina littorea, with a discussion of factors controlling its southern distribution. Ches. Sci. 6 (1): 38-42.

Wells, H.W. and M.J. Wells, 1962. The distinction between Acteocina candei and Retusa canaliculata. Nautilus 75 (3): 87-9

Wood, L., 7968. Physiological and ecological aspects of prey selection by the marine gastropod Urosalpinx cinerea (Prosobranchia: Muricidae). Flalacologia 6 (3): 267-320.

It is the policy of the University of Delaware that no person shall be subjected to discrimination on the grounds of race, color, creed, sex, age, or national or ethnic origin.

